
J. Fluid Mech. (2010), vol. 650, pp. 415–425. c© Cambridge University Press 2010

doi:10.1017/S0022112010000583

415

Hovering of a rigid pyramid
in an oscillatory airflow

ANNIE WEATHERS1, BRENDAN FOLIE2, B IN LIU3†,
STEPHEN CHILDRESS3 AND JUN ZHANG1,3

1Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA
2Department of Mathematics, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA

3Applied Mathematics Laboratory, Courant Institute, New York University, 251 Mercer Street,
New York, NY 10012, USA

(Received 9 September 2009; revised 27 January 2010; accepted 30 January 2010;

first published online 19 March 2010)

We investigate the dynamics of rigid bodies (hollow ‘pyramids’) placed within a
background airflow, oscillating with zero mean. The asymmetry of the body introduces
a net upward force. We find that when the amplitude of the airflow is above a
threshold, the net lift exceeds the weight and the object starts to hover. Our results
show that the objects hover at far smaller air amplitudes than would be required by
a quasi-steady theory, although this theory accounts qualitatively for the behaviour
of the system as the body mass becomes small.

1. Introduction
Reciprocal motion is common in the biological world, and is especially evident in

the forward flapping flight and hovering of birds and insects (see Vogel 1996; Dudley
1999; Alexander 2002). At high Reynolds numbers, hovering flight is associated
with the shedding of vortical structures from the wings, resulting in a downward
momentum flux (see Ellington 1984). The experiment reported here is meant to
simulate the dynamics of reciprocal locomotion by subjecting a free object to an
oscillating background flow of air. The analogy depends on the similarity between
the vortical structures shed in active flapping, and those created by the movement of
the background flow relative to the passive object. Childress, Vandenberghe & Zhang
(2006) have shown that a flexible body, driven passively in a background airflow
oscillating vertically with no mean component, is able to hover stably. The body
has a built-in asymmetry that, together with the induced flapping motion, leads to
the shedding of vortex dipoles and the production of net lift. Another example of
a shape-changing body subject to an oscillating viscous flow is studied numerically
by Spagnolie & Shelley (2009), where a body can hover or ascend with a similar
structure of shed vortices.

Although flexibility is a necessary property of an object capable of active flapping,
a rigid passive object is in principle able to shed vorticity in an oscillating flow field. If
the object has sufficient up–down asymmetry, the possibility arises that hovering could
be achieved without flexing, simulating, in effect, active flapping at small amplitude
about a fixed rest state. As an extension of the research reported in Childress et al.
(2006), we consider here the hovering of geometrically similar objects – rigid hollow
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paper ‘pyramids’ – of varying sizes and masses. By adjusting the amplitude of the
oscillating background airflow, the onset of hovering can be measured. We shall show
that flexible and rigid bodies hover at comparable flow amplitudes, provided that
sufficient up–down asymmetry is present. Our results suggest that, at sufficiently large
frequency, large-wing amplitudes are not necessary for the production of lift by active
flappers. The lift produced in our experiment is found to be significantly larger than
would be deduced from a quasi-steady theory based upon form drag in steady flows.
Quasi-steady theory is successfully used, however, to estimate the qualitative effect of
reducing the mass of the hovering object.

In our ongoing research, the phenomena is being explored further in two dimensions,
using visualization in a water tank of the vorticity shed by a V-shaped object. Also,
a two-dimensional model for lift production similar to that used in Childress et al.
(2006) is being pursued. The results of this work will be reported elsewhere.

2. Experimental results
2.1. Experimental set-up

The oscillating background air is supplied by an alternating current (AC) wind
tunnel, composed of a large speaker, above which sits a 15 cm diameter test section
(see figure 1). The strength of the oscillating wind can be adjusted by varying the
amplitude and the frequency f of the sinusoidal signal driving the speaker. The
peak-to-peak displacement A of the airflow is calibrated by obtaining the peak-to-
peak amplitude of a light piston (made of styrofoam) hanging in the middle of
the test section. The piston is driven passively by the airflow and oscillates at the
same frequency. The air amplitude can thus be measured using a high-speed camera.
The relative phase of the piston and the input signal can also be obtained. We vary
the frequency from 10 to 30 Hz. The amplitude of the oscillating air A can reach
10 cm at a fixed frequency.

The pyramids are constructed of wax paper, which is folded as shown in the inset of
figure 1; they typically measure a few centimetres in length. Carbon fibres are attached
to the edges of the paper pyramid to act as a frame to maintain its rigidity in the
presence of the high-speed airflow (up to 2m s−1). The pyramid shape was chosen as
an easily fabricated geometry providing the necessary asymmetry. The geometry of
such objects can be varied by changing the height-to-width ratio, which we specify
in terms of the apex angle θ , the angle between any of its triangular surfaces and
its axial line. The weight of such pyramids can be increased by evenly winding thin
metallic wires along the carbon fibre frame. In order to prevent the lateral motion of
the object as it hovers in the airflow, the object is allowed to slide along a steel guide
wire standing vertically in the centre of the air chamber, through a small hole cut
through the top of the pyramid. The friction between the pyramid and guiding wire
is negligible compared to the typical drag of the pyramid.

2.2. Criterion for hovering of an object of various sizes

The net lift on an object due to an oscillating background airflow is a function of the
Reynolds number

Re = f Aa/ν, (2.1)

where f , A and ν are respectively the frequency, amplitude and kinematic viscosity
of the airflow, and a is the characteristic length of the object. In an extremely slow
oscillating flow, when the Reynolds number is small and the inertia of the fluid is
negligible, the object experiences a zero net force over a period of air oscillation (see
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Figure 1. Experimental set-up. An AC air current is generated by a loudspeaker, 42 cm in
diameter, driven sinusoidally by a signal generator and an amplifier. The oscillating airflow
in the vertical tube has a zero mean, operating at controlled frequency (10 ∼ 30 Hz) and
amplitude (1 ∼ 10 cm). A hollow ‘pyramid’ (inset), measuring a few centimetres, can be driven
passively in this AC wind tunnel. The pyramids are made with folded wax paper. The rigidity
is provided by supporting frames made of thin carbon fibre rods. The passively driven rigid
body is allowed to move only vertically, sliding along a thin steel rod. The friction due to the
sliding is found to be negligible compared to the form drag.

Purcell 1977). In this case, the flow is governed by the linear Stokes equations, where
the drag is a linear function of the velocity and can therefore have no non-zero mean.
In particular, the drag is invariant under flow reversal, independent of any up–down
asymmetry. On the other hand, at large Reynolds numbers the vertical drag force FD

varies with the direction of the airflow past the body. When the difference in vertical
drag is greater than the weight of the object, the object can be lifted up against
gravity. We remark that we are using here the language of quasi-steady fluid flow,
even though in our experiment the velocity is oscillatory with zero mean and hence
fundamentally unsteady.

Our experimental results agree with the above arguments. At relatively low speeds
of the oscillating air, characterized by the product of its frequency and amplitude
(f A), the pyramid remains on the bottom of the chamber with the peak air drag
less than its weight. As the peak air speed is further increased, the object becomes
partially entrained by the flow, periodically lifted, and then returned to the bottom of
the chamber. Above a critical value, the pyramid detaches completely from the bottom
and abruptly begins to ascend. The hovering equilibrium (lift = weight) is, in principle,
invariant under a constant vertical velocity (Dabiri 2005); however, in our experiment
the ‘state’ of the hovering body varies with its ascent velocity and is adjusted by the
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Figure 2. The minimum peak air speed f A required for pyramid-shaped objects of various
sizes to hover at a frequency f . The mass of the objects is fixed at m= 0.215 gm, and its shape
is fixed with θ = 35◦. As a comparison, the air speed required for free hovering without the
guiding wire is shown by the connected curve of ‘diamonds’, demonstrating a minimal effect
of the wire.

air amplitude. This situation is evident in the quasi-steady model below. In practice,
fine tuning of the amplitude can move the pyramid to a predetermined height, because
of slight vertical variation of the conditions within the chamber. Hovering at this
reference altitude determines a critical amplitude.

The minimum air speeds f A required for pyramids of various sizes (a varies from
2.5–4.5 cm) are shown in figure 2. Free hovering data without the guide wire is also
plotted, and the effect due to the friction is minor. For each pyramid, the lower the
air frequency, the higher the air speed required for it to hover. At fixed frequency and
fixed mass, pyramids of larger size require less air speed to hover. Since Re in our
experiments always exceeds 500, the phenomena reported here should be regarded as
being in the high-Re regime.

2.3. Quasi-steady model

In spite of the fundamental unsteadiness of our problem, it is helpful to invoke a
quasi-steady model to gain some idea of the mechanics of the system. The difference
of the drag due to the upward and downward motion of such a pyramid is dependent
on the up–down asymmetry of the hovering object, which can be quantified by the
fluid drag experienced in a steady flow. When an object with projected area S moves
with velocity u relative to a fluid of density ρ, the steady fluid drag may be expressed
as (see Batchelor 1967):

FD =
1

2
ρu2CDS. (2.2)

Here CD is the drag coefficient, a dimensionless number dependent on the geometry
of the object relative to the flow direction. CD is observed to be roughly independent
of Re for many objects when Re is sufficiently high, i.e. Re � 500 (Batchelor 1967).
The drag coefficients of the pyramids can be obtained from (2.2) by measuring the
terminal velocity V in free fall. The free object, falling at a speed of order 1m s−1

with Re =V a/ν of order 103, is photographed with a high-speed camera. The drag
coefficients in the two possible orientations can be thus measured.
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Figure 3. Asymmetric air drag and its consequent criterion for hovering. (a) The drag
coefficients CD of the paper pyramids of various projected areas S for a similar shape
(θ = 35◦), obtained by measurements of terminal speed V in free fall as the drag balances
with the weight mg. Two orientations give rise to different drag coefficients (slopes of the
two straight lines) as they fall. (b) The computed criterion for hovering, α(g̃), based on the
quasi-steady approximation of the fluid drag, with the drag coefficients derived from (a) being
applied. α is the dimensionless measure of the air amplitude, while g̃ is the dimensionless
acceleration due to gravity. The inset shows the critical dimensionless amplitude α against the
dimensionless period

√
αg̃ and includes the data sets of figure 2. The dashed lines are the

tangents at α = 0.

As shown in figure 3(a), the drag force in terminal free fall (FD = mg) of pyramids
with similar geometry (θ = 35◦) is proportional to the projected area S and the square
of its terminal velocity. The two data sets for 2FD/V 2ρ are plotted against the
projected area S for the two possible orientations. The measured slopes yield the drag
coefficients C+

D = 1.7 and C−
D = 0.9, with ΔCD = C+

D − C−
D = 0.8 ± 0.1.

Considering an oscillating background air with its peak-to-peak displacement A,
the velocity of the air can be expressed as a sinusoidal function as u = πf A sin(2πf t).
The net drag on a fixed pyramid immersed in such an oscillating air flow can be
approximated by averaging the steady drag (see (2.2)) over the entire period T =1/f :

〈FD〉 =
1

2
ρS

1

T

(∫ T/2

0

dtC+
Du2 −

∫ T

T/2

dtC−
Du2

)
=

π2

8
ρS

(
C+

D − C−
D

)
f 2A2. (2.3)

Only when this quantity is large enough to balance the weight can a free object hover.
In the quasi-steady model the condition is applied as follows. The position Y (t) of

a fixed point on a pyramid satisfies

1

2
σρ(U − Ẏ )2SCσ

D = MŸ + mg, (2.4)

where U (t) is the oscillating background flow, σ =sgn(U − Ẏ ), M is the sum of the
mass m and virtual mass mv of the pyramid. We may estimate mv conservatively to be
ρa3 ∼ 0.01 gm, which is negligible compared to the mass m for the data of figure 2. If
we set t = φ/2πf , U = πf A sinφ, Y =Ay/2, the dimensionless form of the equation
becomes

d2y

dφ2
= ασCσ

D

(
sin φ − dy

dφ

)2

− g̃. (2.5)
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Figure 4. Comparison between the criterion for hovering obtained experimentally and that
given by the quasi-steady solution. The paper pyramids are of similar shape with θ = 35◦,
with the mass fixed at m= 0.215 gm. (a) Using (2.3), the lift calculated from measured airflow
at hovering, using the quasi-steady model, is much less than the weight of the pyramid. (b)
The data points show the experimental measurement of the dimensionless air displacements
A/a against the dimensionless air oscillating frequency f a2

√
ρ/mg when the pyramid hovers.

The solid line, A/a < 1.0684 × (f a2
√

ρ/mg)−1, shows the criterion for hovering, according to
the quasi-steady approximation. Below this line, the lift obtained from the oscillatory airflow
cannot support the weight of the paper pyramid. The log–log plot of the experimental results
(shown in the inset) suggests a power-law dependence with an exponent more negative than
−1, the value obtained in the quasi-steady approximation. The peak required air speeds are
significantly less than the quasi-steady values at higher frequencies.

Here α = (1/4)(ρSA/M), g̃ =(m/M)(g/(2π2f 2A)). Note that α is a dimensionless
measure of air amplitude, while g̃ is the dimensionless weight of the paper pyramids.
By solving (2.5) numerically, we find that, given a dimensionless weight g̃, there is a
critical dimensionless air amplitude α, above which the mean speed of the pyramids is
nonnegative. This critical α gives the criterion for hovering. The parameter β = 1/

√
αg̃,

which is independent of A, will also be useful. The numerical calculations yield α

as a function of 1/β as shown in figure 3(b). From this we may deduce from the
tangent line at the origin the inequality α � 5.0g̃. Since the asymptotic behaviour for
small α and large β corresponds to high-frequency small-amplitude air oscillation, the
inequality coincides with the relation obtained by neglecting the term dy/dφ in (2.5).
Setting S = a2, the criterion for hovering in this approximation yields the inequality

A/a �
2
√

2

π

√
1

C+
D − C−

D

(
f a2

√
ρ

mg

)−1

. (2.6)

A related simplified criterion for hovering, using piecewise constant airflow but
retaining the body motion, is given in Spagnolie (2008). The dimensionless variable
A/a is the ratio of the air displacement to the size of the pyramid. The dimensionless
oscillating frequency, f a2

√
ρ/mg, combines a Froude number with a mass ratio.

In figure 4, we compare the quasi-steady results with the minimal hovering flow
velocity for pyramids of the same weight (0.215 gm) and fixed geometry θ = 35◦. Based
on the steady air drag (see (2.2)), the potentially supportable hovering weight of the
pyramid is found to be much smaller than the actual weight of the hovering pyramids,
as shown in figure 4(a), especially for higher air frequency and larger pyramid size. In
figure 4(b), the hovering criterion measured experimentally is shown in the form of
A/a as a function of f a2

√
ρ/mg. We superimpose the quasi-steady hovering criterion
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Figure 5. Dependence of the minimal flow velocity f A on hovering mass. The shadowed
area shows the regimes excluded by the criterion for hovering based on (2.6). (a) With the
oscillating frequency fixed, the dependency of hovering mass on the experimentally measured
peak air velocity suggests a linear response, as shown by the solid data points. The hollow
symbols at m= 0 show the finite minimum air speed required for a paper pyramid of vanishing
mass (sufficiently greater than the virtual mass) to hover, which is obtained by the quasi-steady
approximation. At a fixed mass, the experimentally measured peak air speed f A, required
for objects with a fixed shape (a = 3.5 cm, θ =35◦) to hover decreases and tends to saturate
as the frequency f increases. The data sets are for several values of their frequencies. (b)
Dependence of the relative peak air speed f (A − A′) on the hovering mass, where A′ is the
peak to peak amplitude of the hovering object measured experimentally. The inset shows the
phase difference φ between the displacement of the air and the displacement of the body, for
a body having m= 0.203 gm, as a function of frequency.

A/a � 1.0684(f a2
√

ρ/mg)−1 obtained from (2.6). We see that these variables collapse
the data over the range of sizes studied here. It is revealing that the experimental
data falls well below the lower bound obtained from the quasi-steady approximation,
except at very low frequencies. The log–log plot of A/a against f a2

√
ρ/mg (inset in

figure 4) shows a power-law dependence with an exponent of about −1.5, compared
to the value of −1 expected from the quasi-steady approximation.

2.4. Hovering capability as a function of mass

For fixed size and geometry, a lighter object requires less relative air speed to hover
since less drag is necessary to balance the weight. However it is not clear how f A

varies with the mass. As we show in figure 5(a), the required peak air speed for
hovering, f A, decreases almost linearly with the mass at a fixed frequency f . In
these measurements the size and geometry of the pyramid is fixed at a = 3.5 cm,
θ =35◦; the drag coefficient difference is the same as above, ΔCD =0.8. Surprisingly,
the minimal flow velocity does not seem to extrapolate to zero for small mass. This
suggests that an object does not necessarily hover in a weak oscillating background
flow as it becomes neutrally buoyant. Instead, the object still requires a finite amount
of peak air speed to generate the necessary lift, at least so long as body mass is large
compared to the virtual mass. In the studies reported in Spagnolie & Shelley (2009),
the importance of significant mass to the ‘ratcheting’ of the body was also observed.

A criterion for an object to hover at small mass can be obtained from the quasi-
steady approximation (2.4). For completeness we retain the small virtual mass, which
has been considered by Kanso et al. (2005) for vanishing body mass. Then, with m
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and mv small, we must conclude that Ẏ → U , so that

1

2
σρ(U − Ẏ )2SCσ

D ≈ (m + mv)U̇ + mg. (2.7)

It follows that v ≡ U − Ẏ has the same sign as (m + mv)U̇ + mg. Solving, v =

−k
√

|(m + mv)U̇ + mg|/C−
D where it is negative, and v = k

√
((m + mv)U̇ + mg)/C+

D

where it is positive, k being a common constant, defined as k =
√

2m/ρS. The condition
for hovering then yields 2π2f 2A((m + mv)/m) = 6.93g, or f A= 0.351(gm/f (m + mv)).
The theory thus correctly represents the decrease of the extrapolated, small mass
values in figure 5 with increasing frequency at body masses large compared to the
virtual mass, although the limiting values obtained with mv = 0 are somewhat smaller.
As the mass falls below the virtual mass, f A does drop towards zero. Note that
the quasi-steady inequality (2.6) here gives the condition f A � 2.6

√
mms−1, but this

becomes exact only for small α, whereas we see that α diverges for small m and mv .
The shaded area in figure 5 shows the values excluded by this inequality, although we
cannot usefully extend them to the origin.

From these calculations we can deduce that the reason for a finite hovering speed
at near zero mass comes from the reduction in the ‘relative’ velocity as mass is
reduced. The body is increasingly entrained in the flow, with the result that a finite air
amplitude must be maintained to insure the vanishingly small relative velocity needed
for lift. The dependence of the ‘relative’ peak air speed on the mass of the hovering
object was verified experimentally and the data is shown in figure 5(b). In the inset
one sees that the phase difference between the pyramid and the oscillating air is very
small, showing the entrainment of the hovering object at various air frequencies. As
a consequence, the relative air speed can be represented by the peak-to-peak value of
f (A−A′), where A is the air displacement and A′ is the object displacement. When the
mass of the pyramid approaches zero, the relative air speed is seen to also approach
zero. We emphasize that our measurements stop short of masses comparable to the
probable virtual mass. The domain excluded by the quasi-steady criterion is again
shown as the shaded area.

2.5. Dependence on geometry

For pyramids of fixed mass and fixed projection area, the minimal flow velocity
to hover also depends on its apex angle θ . Here we vary the pyramid geometry
by modifying the angle θ while keeping the weight as well as the projected area
A= a2 fixed. A value of θ equal to 90◦ corresponds to a plane square, while a
value of θ near 0◦ corresponds to a long thin structure. The dependence of the
minimal flow velocity upon the apex angle θ is shown in figure 6. The inset shows the
drag coefficients of pyramids of varying geometry, again obtained from the terminal
velocity in free fall. As θ approaches 90◦, the object requires a relatively high air
speed to hover as all asymmetry is lost. As θ decreases, the difference between the
two drag coefficients ΔCD increases due to the increasing spatial asymmetry. At fixed
weight, the minimum required air speed therefore decreases. For yet smaller values
of θ , the minimum required air speed starts to increase as the up–down asymmetry
becomes less pronounced. There appears to be an optimal geometry with its apex
angle θ ∼ 30◦, independent of the oscillating frequency. The height of such an optimal
shape is about the same as its lateral size a.
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shape. Their shape and mass are fixed at a =4 cm, m= 0.153 gm. The upper and lower data
sets correspond to a flexible and a rigid pyramid respectively, as shown by the insets besides
the data sets.

3. Rigid versus flexible bodies
It is of interest to compare the present results for rigid objects with the measurement

of hovering of flexible bodies in an oscillating flow, as reported by Childress et al.
(2006). We now consider a comparison of hovering of similar paper pyramids with
and without flexibility. The flexibility is realized by making a paper pyramid of the
same shape, however, with the vertex lines cut halfway towards its top. Therefore its
sidewalls are able to flap along the folding line (see figure 7). As shown in figure 7,
the flexible and rigid pyramids are found to require almost the same air amplitude
in order to hover. This suggests that similar mechanisms of vortex shedding prevail.
As the oscillating frequency f increases, the rigid paper pyramids hover more easily
than the flexible one. There appears to be a clear optimal frequency for the flexible
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pyramids, obtaining minimal flow amplitude (cf. Childress et al. 2006), while the rigid
one, if it does reach a minimum amplitude, does so at a much larger frequency.

4. Discussion
A pyramid-shaped object is observed to hover freely in an oscillating background

air flow with zero mean component, provided that the amplitude of the oscillation
is sufficiently large. The required amplitude depends on the body size and geometry,
as well as its mass. A quasi-steady theory may be used to obtain a criterion for
hovering. This theory involves three dimensionless parameters: the dimensionless
air displacement A/a, the dimensionless oscillating frequency f a2/ν and the
dimensionless mass mg/ρν2. If it is assumed that the large Reynolds number of
our experiment eliminates the dependence upon ν, then the relevant parameters are
A/a and f a2

√
ρ/mg. Our data for pyramids of fixed weight for the hovering value

of A/a, as a function of the above frequency parameter, nicely collapses the influence
of size.

Our investigation reveals a large overestimate of the hovering amplitude given by
the quasi-steady approximation. Also, preliminary results suggest that flexibility can
play a minor role in determining the minimal hovering amplitude. Taken together, our
observations suggest that some rigid bodies, suspending in oscillating air, mimic the
vortex shedding associated with active flapping. That is to say, our experiment may
model active flapping with little wing movement, which could provide a surprisingly
effective hovering mode. It is interesting that Altshuler et al. (2005) have observed
short-amplitude high-frequency hovering in honeybees, with the unsteady mechanism
during its stroke reversal contributing largely to the net upward force.

Our hovering pyramids do not benefit very much from being light. A lighter object
can be more easily entrained by the surrounding air, resulting in less relative flow
past the free object. For active flappers this translates into similar efforts in terms
of wing movement. Body mass may play a key role in determining the efficiency of
hovering flight (Spagnolie & Shelley 2009).

Although we have observed an optimal configuration within the family of shapes
considered in this report, we have not undertaken any investigations outside of the
pyramidal shape. Our hovering amplitudes are comparable to those observed by
Childress et al. (2006) for a different shape with flexible wings. Perhaps the geometry
of the hovering rigid object can be optimized by maximizing the up–down drag
asymmetry.

In this paper quasi-steady theory has been used as a benchmark for our experiment.
While this theory significantly underestimates the lift provided by the oscillating
airflow, it provides the analytical basis for some aspects of the problem, such as the
effect of small mass. We have postponed to a subsequent paper the observations and
modelling of the shed vorticity responsible for the unsteady lift production. We do
not, at present, have a simple physical model that could account for the substantial
drag enhancement we observe. However, it is quite possible that an improved drag
law, incorporating the effects of acceleration, would lead to hovering amplitudes closer
to those observed. Mei (1994) and Odar & Hamilton (1964) have discussed such drag
laws for an accelerating sphere. Here the asymmetry of the body is an important
feature, which would have to be incorporated into any such improved model. We
have dealt in the flexible case with unsteadiness in a simple two-dimensional model
(see Childress et al. 2006). Although this model qualitatively agreed with much of the
experimental data, it did not offer any quantitative comparison with this data. We
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surmise that the same situation may prevail for the rigid case, and that ultimately
numerical simulation is needed to accurately compute the observed lift.
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